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Based upon the strength criterion proposed by Gol'denblat and Kopnov, the second-, fourth-, 
and sixth-rank strength tensors in the three-dimensional case have been determined for 
each of the crystal classes from consideration of invariant transformations of the strength func- 
tion. A cubic polynomial form has been proposed as an improved strength criterion for aniso- 
tropic brittle materials by using the constitutive laws in continuum mechanics. The methods of 
determination of the strength coefficients and the strength envelope in the biaxial stress state 
for graphite are presented in detail by relating the cubic polynomial strength criterion to the 
experimental test data. Numerical examples are presented to show that the theoretical and 
experimental results are in good agreement. A comparison with the results previously publish- 
ed is presented. 

1. In troduc t ion  
Graphite is a non-linear material. Many grades of 
graphite are readily available and they have many 
usefid properties for special applications. Graphite 
has a relatively high thermal conductivity, low ther- 
mal expansion coefficient, high resistance to thermal 
shock, high melting point, and great resistance to 
chemical erosion. By virtue of its high strength-to- 
weight ratio, graphite has become one of the leading 
materials to be used in rockets and missiles as irregu- 
lar cone, nozzle, and vane shapes. In the nuclear 
industry, graphite is used as a moderator, a reflector 
or a thermal column, and a Shielding structure because 
of the increase in strength and hardness of graphite 
as it is exposed to irradiation. 

Prior to fracture, graphite exhibits a small amount of 
plastic deformation. Like most other brittle materials, 
graphite is compressible and has a higher strength in 
compression than in tension. This is commonly 
referred to as the Bauschinger effect. 

Graphite has a material symmetry unlike many 
other brittle materials. The plane perpendicular to the 
direction of extrusion is considered to be an isotropic 
plane. The material properties in the isotropic plane 
may be quite different from the properties along the 
direction of extrusion. The material symmetry so 
described is called transverse isotropy. 

The broad usage of graphite demonstrates that it is 
indeed a versatile industrial material. Thus, for the 
purpose of material characterization and design, an 
operationally simple strength criterion for graphite is 
desirable. 

In recent years the trend has been to develop a 
strength criterion based on the invariants of the stress 
tensor in a unified form. This form of higher order 
function is more suited to incorporate with the com- 
puter codes and enables the inclusion of more stress 
interaction terms yielding an accurate description of a 
failure surface. 

Based upon the strength criterion proposed by 
Gol'denblat and Kopnov, Huang [1] determined the 
second-; fourth-; and sixth-rank strength tensors in the 
three-dimensional case for each of the crystal classes 
from consideration of invariant transformations of 
the strength function. Huang [2] proposed a cubic 
polynomial form as an improved strength criterion for 
anisotropic brittle materials using the constitutive 
laws in continuum mechanics. In the present paper the 
methods of determination of the strength coefficients 
and the strength envelope in the biaxial stress state for 
graphite are presented in detail, by relating the cubic 
polynomial strength criterion to the experimental test 
data. A numerical example is presented to show that 
the theoretical and experimental results are in good 
agreement. A comparison with previous results 
published [4] is presented. 

2. Development of strength criterion 
The general theory of strength criterion for aniso- 
tropic crystals can be established from consideration 
of the strength functions F, where 

F = F(aij) = 0 (1) 

and o-is is the stress tensor which is symmetric. The 
strength function, F, is required to be invariant under 
the group transformations {tis } which characterize the 
material anisotropy 

F(6o.) = F(a~s) (2) 

where the transformed stress tensor obeys the follow- 
ing rule 

~i j  ~ lir tjs ars 

It is also assumed that the strength function Fmay be 
expressed approximately in the following polynomial 
form as proposed by Col'denblat and Kopnov [3] 

r = (Foa J + (Fijklaijakl) ~ 

q- (FijklmnaijCTklamn) 7 - -  1 = 0 (3) 
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which, in fact, is a third-order approximation of 
Equation 1. 

For the transversely isotropic material such as 
graphite we take, as our reference system, a right-hand 
rectangular cartesian coordinate system ~ ,  such that 
the X3 is parallel to the direction of material extrusion. 
The group of  coordinate transformation is 

R~[21 + ix2 = e- i~(xl  + ix2), x3 = x3] (4) 

for all values of ~, and the stress invariants are 

/0 ) :  0-3, 0-1 + 0-2 

1(3): {detl0-il} or 2a40.s0-e - 0-10- 2 - 0-20-~ 

(5) 

where the contracted notation is used, i.e. 

0.11, 0"22~ 0"33, 0-23, 0"13, 0-12) 

~--- (0-1, 0-2' 0-3' 0-4, 0-5' 0-6) 

The stress invariants presented in Equation 5 form 
a strength function F in order for the transversely 
isotropic hyperelastic materials. With Equation 5 the 
cubic strength function Fcan  be written as the follow- 
ing form-invariant 

{F,(0-1 + 0-0 + F30-~} ~ + {F.(0-{ + ~ )  + ~3~0- 2 

+ 2F13[0-3(0- I -t- 0.2)] + 2F120-10-2 4- F55(0-42 + 0-~) 

+ 2(Ell -- FL2)0-~} e + {F3330-~ + Fill(o-1 -~- 0"2) 3 

-~- F113(0-1 + 0"2)20"3 + /7133(O"1 Jr- 0-2)0-~ 

+ F316[(°'10-2 -- 0.~)0-3] + F3s,[( 0-2 + 0-~)0-3] 

+ r , 6 [ ( <  + ~)(0-10-~ - 0-~)1 

+ F I . [ ( o ,  + 0-~)(G] + 0-~)] 

+ F666[det(0-~)]} 7 = 1 (6) 

where Fj, F,> and F~kj are the coefficients of strength in 
various orders, 0-i (i = 1, 2 . . . . .  6) is the matrix for 
the stress components, and ~,/~, and ~ are material 
parameters. 

For the plane problem in (X~, X3), Equation 6 yields 

(F10-1 + F30-3) ~ + (Fit0-~ + F330~ -4- 2F130-10-3 

+ F550-~)/~ -~ (/2111G ~ -{- F3330- ~ + Fl130-20"3 

+ F1330-1~ + F3~30-~ + Fl,s0-10-~) ' = 1 (7) 

The function given in Equation 6 or Equation 7 is 
invariant under the group of transformations of coor- 
dinates given in Equation 4. For the case of c~ = fl = 
7 = 1, the tensors F~ and Fijk characterize the Baus- 
chinger effect of the material, and the tensors F~ 
and F~j~ determine the hypersurface of the strength 
function in the stress space. It is apparent that the 
third-order approximations contain more disposable 
coefficients, as compared with the quadratic approxi- 
mation of strength tensor theory. Therefore, the latter 
form is more flexible and improved the curve fitting. 
Furthermore, the cubic form of the strength criterion 
in the X1 X3 plane with the shear stress being zero can 

be written as 

f (0- i)  -~ /710" 1 + F30- 3 + Fi10-} + 2F130-10- 3 + F330" ~ 

+ r,,0-~ + F1,30-}0-3 + F,330-10-~ 

+ F3330-~ - 1 = 0 (8) 

where the strength coefficients F~3, FI~3, and Ft33 
characterize completely the interactions of the principal 
normal stress 0-1 and 0-3 in the graphites. Certainly 
these coefficients can be determined only by experi- 
mental tests of the multiaxial stress states. 

3. Determinat ion of strength 
coeff icients 

In order to determine the nine components of the 
strength tensor in Equation 8, we need at least nine 
independent equations with the strength coefficients as 
unknowns. In other words, we need tests of nine 
different stress states. By inspection of Equation 8 it is 
apparent that nine data sets from biaxial stress tests 
would give nine simultaneous equations, and hence 
the nine strength coefficients could be obtained by 
solving these equations. Although it is possible to get 
the best selection of data by choosing certain test 
points with a trial-and-error process, we would like to 
make use of the whole set of data points. Since there 
are unavoidable errors existing in each test procedure, 
it is necessary to have the errors rounded over the 
whole range of the stress space. In this case, there will 
be more than nine equations to determine the nine 
strength coefficients. In order to obtain appropriate 
values of coefficients, the overdetermined set of simul- 
taneous equations can be solved by using a numerical 
method such as the least square technique. For n data 
points, Equation 8 can be written as 

F~(0.,)i + F3(a3)i + Fu(0-~)i + ri3(Za, a3)i 

+ r3/0-b, + F~1,(0-~), + Fi,3(0-~0-3)i 

+ F~33(a,a~), + F333(0-]),- 1 = 0 (9) 

where i = l, 2 . . . . .  n. The matrix form of above 
equations is expressed as 

{1} [0-1 { r }  

(n x 1)=(n x 9)(9 x 1) 

where { 1 } denotes the column matrix with all elements 
being one. To assign appropriate weights to the data 
points, a diagonal weighting matrix [w] is introduced. 
By premultiplying Equation (9) with [0-]T[w], one 
obtains 

M T [w] {1} M T [w] 
z 

(9 x n)(n x n)(n x 1) (9 x n)(n x n) 

[0-1 {F} 
(t0) 

(n x 9)(9 x 1) 

when equal weights are given to all data points, [w] is 
an identity matrix. 

Equation 10 can be written as 

{E} = [D] {F} (11) 

(9 x 1) (9 x 9)(9 x 1) 
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o r  

{F} = [D] '{E}. 

By solving Equation (l l), the nine components 
of strength tensors F are obtained. Substitution 
of these computed values of FI, /~3, . . . ,  F333 in 
Equation 8 yields the best approximation by the least 
square fit to the experimental stress data. 

4. Determination of the strength 
envelope for biaxial states 

Equation 1 defines geometrically a strength surface in 
six-dimensional stress space. A stress point can only 
be located either on or inside the strength surface in 
the stress space. Failure. occurs only if the stress point 
is on the surface. With the geometric interpretation, 
Equation 8 gives the strength envelope of the biaxial 
states of stress. This envelope represents the intersec- 
tion of the strength surface with the X1X3 coordinate 
plane. 

The strength envelope of the biaxial states of stress 
has to be closed and convex to ensure the stability of 
the material. In other words, any radial line from the 
origin of coordinates (zero stress state) must intersect 
the stress envelope at only two points which are 
located on opposite sides of the origin. In this paper, 
the cubic strength function is considered. A cubic 
strength function with real coefficients (as Equation 8) 
has three roots in general. However, in order to have 
a closed envelope enclosing the origin of the stress 
space, Equation 8 must have three real roots on a 
loading path. For this reason adequate weights must 
be assigned to those data points while the strength 
coefficients, F's, are determined, so that the strength 
envelope is a closed, smooth, and convex curve. 

In this paper, Equation 8 will not be solved analyti- 
cally in a closed form solution. Alternatively, an iter- 
ative procedure of numerical analysis is developed by 
using the Newton-Raphson technique. Let R denote 
the ratio o f o "  3 to 0"1, or R = o 3 / a  l = tan 0, where 0 
represents the slope of a radial line. 

For an iteration scheme, Equation 8 can be defined 
as follows 

F(o-i) = f 

where f denotes the residual function. This equation 
can be expressed as 

f = Aa~ + Ba~ + Ca~ - 1 (12) 

where 

A 

B = 

C = 

F333 R3 ~- F133 R2 --]- F I 1 3 R  -~- FIH 

F33R 2 + 2F13 R + F l l  

F3R + F, 

nique is used. The correction factor 

Ao-, = --[f/(3Aa~ + 2Ba~ + C)] (13) 

is determined to improve the previous value of a,. 
Therefore, the improved value of a, is 

( a l ) n +  l = (O'l) n + (A0"l)  n 

where n denotes the number of iterative steps. 
To start the iteration procedure, an initial guess is 

required for the unknown, a~. This can be done by 
simply setting a, equal to zero or the uniaxial material 
strength for R = 0. When R is increased by a small 
increment AR, the previously obtained value of O-l, 
which is the correct solution associated with previous 
R value, is used as the initial guess value for the 
current calculation. This is a particularly appropriate 
scheme for the strength envelope; the correct solution 
(o-t ,  O-3)R=(n+0aR for the current calculation is in the 
neighbourhood of the previous solution (o-1, a3)R=,AR. 
Also this scheme converges quadratically. 

As the technique converges to the correct solution, 
two things happen. The absolute value of the residual 
function given by Equation 12 approaches zero, and 
the absolute value of the correction factor given by 
Equation 13 becomes smaller. Hence, an appropriate 
small value of these quantities may be chosen as 
the criterion for which the iterative process is 
terminated. 

In this numerical analysis, a particular point should 
be noted. In order to obtain a smooth, closed, convex 
strength envelope, Equation 8 must yield three real 
roots. After we obtain one real root of Equation 8, the 
other two roots must be real, also. By eliminating the 
obtained real root, denoted by a, one finds a quadratic 
equation 

Ala~ + Blal + C, = 0 (14) 

where 

A I = A 

B1 = B + A l a  

Ci = C + Bla 

If  coefficients A,, B t, and C, satisfy the inequality 

B ~ -  4AIC1 /> 0 

the two remaining roots of Equation 8 will be real. 
Otherwise the other two roots are conjugate complex. 
If the latter case occurs, the strength coefficients ~ ,  F~j 
and Fqk must be re-evaluated. However, the iterative 
process adopted in this paper usually proceeds 

T A B L E  I 

ATJ-S ATJ  Graph- I - t i t e  J T A  

F, 
Of course, if the correct value of a, for a given value F3 
of R is substituted into Equation 12, the function f f .  

F,  
will be equal to zero. On the other hand, if an incorrect F33 
value of o-, is used, Equation 12 yields a non-zero FH, 
value. F~ 13 

In order to iterate from an estimated value of  cq to F~33 
a correct solution of a, ,  a Newton-Raphson tech- F3~3 

0,148300 0 ,06000 0 .172000 0 .059600 
0 .147700 0 .21000 0 .128000 0 .165000 

- 0.012 700 0.045 00 0.046 900 0.005 000 
- 0.013 400 -- 0.007 00 - 0.022 000 - 0,006 780 

0.022 700 0.038 00 0 .021000 0,011 700 
- 0.000 697 0.002 10 - 0.001 600 0.000 040 

- 0.000 647 -- 0.006 00 0.001 860 - 0.000 300 

-- 0.002 170 0,000 38 -- 0.003 570 - 0.000 070 
0.000 445 0.000 30 0.000 082 0 .000128 
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Figure 1 Strength envelopes for ATJ-S graphite (O, data, - -  
proposed cubic function, - - - higher order failure surface, - . . . . . .  
non-homogeneous multisegrnented ellipse). 

smoothly at every stage if R is incremented gradually. 
The computa t ion  results in a desired real root  for the 
true strength envelope. Thus  the re-examination o f  the 
other two roots to be real is not  necessary in this 
iterative process if the strength coefficients are deter- 
mined properly. As the process converges to the cor- 
rect solution, ~ ,  for a given value o f  R, the correspond- 
ing value o f  o- 3 will be obtained easily. In this way the 
complete strength envelope, as expected, can be 
obtained graphically. 

5. N u m e r i c a l  e x a m p l e  
A computer  p rogram has been developed. Incorpora t -  
ing the determination o f  the strength coefficients and 
the real roots  o f  the cubic equation, the best fit 
strength envelope is obtained. In order to verify the 
proposed strength criterion, the experimental data  for 
graphites [4] are used for the forenamed calculations. 

For  the case o f  plane stress in the X~ X3 plane with 
shear stress o- s being zero, the strength coefficients are 
obtained and summarized in Table I. 

The initial value o-] is chosen to be zero while 
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Figure 2 Strength envelopes for ATJ graphite (o, data, - -  
proposed cubic function, - - - higher order failure surface, - . . . . . .  
non-homogeneous multisegmented ellipse). 
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Figure 3 Strength envelopes for graphi-I-tite graphite (o, data, 
- -  proposed cubic function, - - -  higher order failure surface, 
. . . . . . .  non-homogeneous multisegmented ellipse). 

R = 0. In the iterative process, a five degree increment 
o f  A0 is specified, as 0 is increased gradually f rom 0 ° 
to 360 ° (R = t an0 ) .  When 0 = 900 and 270 ° a 
modification must  be made  in this iterative process in 
order  to avoid the difficulty in numerical calculation. 
In this calculation, an error tolerance o f  1 x 10 -4 is 
used to decide when the iteration should be stopped. 

The stress envelope given by Equat ion  8 with the 
strength coefficients shown in Table I for graphites are 
plotted in Figs 1 to 4. The results previously obtained 
[4] are also plotted in the same figures for comparison.  

6. C o n c l u s i o n  
The new proposed cubic polynomial  strength criterion 
(Equat ion 8) has been compared  with the existing 
experimental strength data  for the biaxial stress state. 
G o o d  correlation between theoretical and experimental 
results is observed. 

Systematic methods o f  determining strength coef- 
ficients as well as the stress envelope have been 
developed. These methods are also suitable for evalua- 
tion o f  strength criteria for other brittle materials 
based on the concept  o f  the stress tensor invariants. 
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Figure 4 Strength envelopes for JTA graphite (O, data, - -  
proposed cubic function, - - - higher order failure surface, - . . . . . .  
non-homogeneous multisegmented ellipse). 



The configuration of the stress envelope obtained in 
this paper is very similar to that previously given [4]. 
However, in this paper a straightforward approach is 
taken without using the absolute value term in the 
strength function, as has been proposed previously [4], 
(the so-called non-homogeneous multisegmented 
ellipse). The multisegmented ellipse approach might 
cause some difficulties in the numerical calculation. 
On the other hand, a simple cubic order failure surface 
can yield good results for JTA graphite as it did in this 
paper. This result also shows that the cubic order 
failure surface criterion should not be abandoned as 
has been previously argued [4]. 
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